CD4026B, CD4033B Types

Decade Counters/Dividers

High-Voltage Types (20-Volt Rating)

With Decoded 7-Segment Display Outputs and:
- Display Enable – CD4026B
- Ripple Blanking – CD4033B

- CD4026B and CD4033B each consist of a 5-stage Johnson decade counter and an output decoder which converts the Johnson code to a 7-segment decoded output for driving one stage in a numerical display.

These devices are particularly advantageous in display applications where low power dissipation and/or low package count are important.

Inputs common to both types are CLOCK, RESET, & CLOCK INHIBIT; common outputs are CARRY OUT and the seven decoded outputs (a, b, c, d, e, f, g). Additional inputs and outputs for the CD4026B include DISPLAY ENABLE input and DISPLAY ENABLE and UNGATED “C-SEGMENT” outputs. Signals peculiar to the CD4033B are RIPPLE-BLANKING INPUT and LAMP TEST INPUT and a RIPPLE-BLANKING OUTPUT.

A high RESET signal clears the decade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. The CLOCK INHIBIT signal can be used as a negative-edge clock if the clock line is held high. Anticlock gating is provided on the JOHNSON counter, thus assuring proper counting sequence. The CARRY-OUT (Co) signal completes one cycle every ten CLOCK INPUT cycles and is used to clock the succeeding decade directly in a multi-decade counting chain.

The seven decoded outputs (a, b, c, d, e, f, g) illuminate the proper segments in a seven segment display device used for representing the decimal numbers 0 to 9. The 7-segment outputs go high on selection in the CD4033B; in the CD4026B these outputs go high only when the DISPLAY ENABLE IN is high.

Features:
- Counter and 7-segment decoding in one package
- Easily interfaced with 7-segment display types
- Fully static counter operation: DC to 6 MHz (typ.) at VDD=10 V
- Ideal for low-power displays
- Display enable output (CD4026B)
- “Ripple blanking” and lamp test (CD4033B)
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Schmitt-triggered clock inputs

Applications
- Decade counting 7-segment decimal display
- Frequency division 7-segment decimal displays
- Clocks, watches, timers (e.g., 60, 60, 60, 60 counter/display)
- Counter/display driver for meter applications

Terminal Diagrams

Top View

CD4026B

CD4033B

Maximum Ratings, Absolute-Maximum Values:

- DC Supply-Voltage Range (VDD): -0.5 V to +20 V
- Input Voltage Range, All Inputs: -0.5 V to VDD +0.5 V
- DC Input Current, Any One Input: ±10 mA
- Power Dissipation Per Package (Pd):
 - For TA = -55°C to +100°C: 500 mW
 - For TA = +100°C to +125°C: Derate Linearity at 12 mW/°C to 200 mW
- Device Dissipation per Output Transistor
 - Operating-Temperature Range (TA): -55°C to +125°C
 - Storage Temperature Range (Tstg): -65°C to +150°C
- Lead Temperature (During Soldering):
 - At distance 1/16 ± 0.032 inch (1.59 ± 0.78 mm) from case for 10 s max: = 265°C

Copyright © 2003, Texas Instruments Incorporated
The CD4026B- and CD4033B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

CD4026B

When the DISPLAY ENABLE IN is low the seven decoded outputs are forced low regardless of the state of the counter. Activation of the display only when required results in significant power savings. This system also facilitates implementation of display-character multiplexing.

The CARRY OUT and UNGATED “C-SEGMENT” signals are not gated by the DISPLAY ENABLE and therefore are available continuously. This feature is a requirement in implementation of certain divider functions such as divide-by-60 and divide-by-12.

CD4033B

The CD4033B has provisions for automatic blanking of the non-significant zeros in a multi-digit decimal number which results in an easily readable display consistent with normal writing practice. For example, the number 0050.0700 in an eight digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the CD4033B associated with the most significant digit in the display to a low-level voltage and connecting the RBO terminal of that stage to the RBI terminal of the CD4033B in the next lower significant position in the display. This procedure is continued for each succeeding CD4033B on the integer side of the display.

On the fraction side of the display the RBI of the CD4033B associated with the least significant bit is connected to a low-level voltage and the RBO of that CD4033B is connected to the RBI terminal of the CD4033B in the next more-significant-bit position. Again, this procedure is continued for all CD4033B's on the fraction side of the display.

In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a high level voltage (instead of to the RBO of the next more-significant-stage). For example: 0.0046. Likewise, the zero in a number such as 763.0 can be displayed by connecting the RBI of the CD4033B associated with it to a high-level voltage.

Ripple blanking of non-significant zeros provides an appreciable savings in display power.

The CD4033B has a LAMP TEST input which, when connected to a high-level voltage, overrides normal decoder operation and enables a check to be made on possible display malfunctions by putting the seven outputs in the high state.

The CD4026B- and CD4033B-series types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).
CD4026B, CD4033B Types

Fig. 1 – CD4026B logic diagram.

Fig. 2 – CD4033B logic diagram.

Fig. 3 – CD4026B timing diagram.

Fig. 4 – CD4033B timing diagram.

Fig. 5 – Detail of typical flip-flop stage for both types.

Fig. 6 – Typical n-channel output low (sink) current characteristics.

Fig. 7 – Minimum n-channel output low (sink) current characteristics.

Fig. 8 – Typical p-channel output high (source) current characteristics.
Dynamic Electrical Characteristics at $T_A = 25^\circ$C, Input $t_r, t_f = 20 \text{ ns}$,

$C_L = 60 \text{ pF}, R_L = 200 \text{ k\Omega}$

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDD (V)</td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>Clocked Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation Delay Time;</td>
<td>t_{PLH}, t_{PHL}</td>
<td>5</td>
<td>250</td>
</tr>
<tr>
<td>Carry-Out Line</td>
<td>10</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Decode Outlines</td>
<td>5</td>
<td>350</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>Transition Time;</td>
<td>t_{THL}, t_{TLH}</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Carry-Out Line</td>
<td>10</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Clock Input Frequency, f_{CL}^A</td>
<td>5</td>
<td>2.5</td>
<td>5 -</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Min. Clock Pulse Width, t_W</td>
<td>5</td>
<td>110</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Clock and Clock Inhibit Rise or Fall Time;</td>
<td>t_{RCL}, t_{ICL}</td>
<td>5</td>
<td>Unlimited</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Input Capacitance, C_{IN}</td>
<td>Any Input</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Reset Operation				
Propagation Delay Time;	t_{PLH}	5	275	550
To Carry-Out Line	10	120	240	
	15	80	160	
To Decode Out Lines,	t_{PHL}, t_{PLH}	5	300	600
	10	125	250	
	15	90	180	
Min. Reset Pulse Width, t_W	5	100	120	
	10	50	100	
	15	25	50	
Min. Reset Removal Time	5	0	30	
	10	0	15	
	15	0	10	

Measured with respect to carry-out line.

Fig. 9 - Minimum p-channel output high (source) current characteristics.

Fig. 10 - Typical propagation delay time as a function of load capacitance for decoded outputs.

Fig. 11 - Typical propagation delay time as a function of load capacitance for carry-out outputs.

Fig. 12 - Typical maximum clock input-frequency as a function of supply voltage.
CD4026B, CD4033B Types

Fig. 13 - Typical power dissipation as a function of clock input frequency.

Fig. 14 - Dynamic power dissipation test circuit for CD4033B.

INTERFACING THE CD4026B AND CD4033B WITH COMMERCIAL AVAILABLE LIGHT EMITTING DIODE DISPLAYS

Fig. 15 - Quiescent device current.

Fig. 16 - Input voltage.

Fig. 17 - Input current.

Chip dimensions and pad layout for CD4026B

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in lines (1/2 inch).
CD4026B, CD4033B Types

INTERFACING THE CD4026B AND CD4033B WITH COMMERCIALLY AVAILABLE 7-SEGMENT DISPLAY DEVICES*

LOW-POWER INCANDESCENT READOUTS
PNLINES INC-Series O and R
TUBE REQUIREMENTS V_T^{cd} mA/Segment
0-02-15 1.5 8
0-04-30 3 8
0-06-30 3 8
R-RS-20 2 4.3
R-RS-30 3 4.3

ASSUMED TRANSISTOR CHARACTERISTICS
At $V_C = 10$ V
$V_T = 0.75$ V
$I_C = 2.5$ mA

COMMUNITY
$V_{CCI} = 5$ V
$I_C = 2$ mA

COMMUNITY
$V_{CCI} = 10$ V
$I_C = 10$ mA

COMMUNITY
$V_{CCI} = 6$ V
$I_C = 3$ mA

92CM-3170D

* The interfacing buffers shown, while a necessity with the CD4026A and CD4033A, are not required when using the "B" devices; the "B" outputs (10 times the "A" outputs) can drive most display devices directly at voltages above 10 V.

NEON READOUT (NIXIE TUBE)
1. Alco Electronics — MG19
2. Burroughs — B5971, B7971, B8971
TUBE REQUIREMENTS V_T^{cd} mA/Segment
Alco MG19 180 0.5
Burroughs B5971 170 3
Burroughs B7971, B8971 170 6

TRANSISTOR CHARACTERISTICS
Leakage with transistor off 0.05 mA
$V_{BRICER} > V_T$
$R_{DC}^{\text{(min)}} = 30$

LOW VOLTAGE VACUUM FLUORESCENT READOUTS
1. Tung Sol DIGIVAC S/L Type DT1244A or DT1245C
2. Nippon Electric (NEC), Type DG12E or DG16S
TUBE REQUIREMENTS: 7 to 300 mA/segment
13.5 V INHIBIT LOGIC VOLTAGE
1.6 V AC OR DC

92CM-3170D

3-75
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4026BE</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>CD4026BE</td>
<td></td>
</tr>
<tr>
<td>CD4026BEE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>CD4026BE</td>
<td></td>
</tr>
<tr>
<td>CD4026BNSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CD4026B</td>
<td></td>
</tr>
<tr>
<td>CD4026BPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CM026B</td>
<td></td>
</tr>
<tr>
<td>CD4026BPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CM026B</td>
<td></td>
</tr>
<tr>
<td>CD4033BE</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>CD4033BE</td>
<td></td>
</tr>
<tr>
<td>CD4033BPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CM033B</td>
<td></td>
</tr>
</tbody>
</table>

[1] The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

[2] RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

[4] There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

[5] Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4026BNSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>CD4026BPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4026BNSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>CD4026BPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
MECHANICAL DATA

NS (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN

<table>
<thead>
<tr>
<th>DIM</th>
<th>14</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>10,50</td>
<td>10,50</td>
<td>12,90</td>
<td>15,30</td>
</tr>
<tr>
<td>A MIN</td>
<td>9,90</td>
<td>9,90</td>
<td>12,30</td>
<td>14,70</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.
MECHANICAL DATA

N (R−PDIP−T)**

PLASTIC DUAL−IN−LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS−001 VARIATION</th>
<th>AA</th>
<th>BB</th>
<th>AC</th>
<th>AD</th>
</tr>
</thead>
</table>

NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Falls within JEDEC MS−001, except 18 and 20 pin minimum body length (Dim A).
⚠️ The 20 pin end lead shoulder width is a vendor option, either half or full width.

4040049/E 12/2002
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated