🛠️ Dive into our collection of DIY Kits, 🔊 Audio Amplifiers, Digital Scoreboards, FM transmitters, and more!
🎶 Explore endless possibilities at our new store.


This is a DC-DC step-up converter based on LM2585-ADJ regulator manufactured by Texas Instruments. This IC was chosen for its simplicity of use, requiring minimal external components and for its ability to control the output voltage by defining the feedback resistors (R1,R2). NPN switching/power transistor is integrated inside the regulator and is able to withstand 3A maximum current and 65V maximum voltage. The switching frequency is defined by the internal oscillator and it’s fixed at 100KHz.

The power switch is a 3-A NPN device that can standoff 65 V. Protecting the power switch are current and thermal limiting circuits and an under-voltage lockout circuit. This IC contains a 100-kHz fixed-frequency internal oscillator that permits the use of small magnetics. Other features include soft start mode to reduce in-rush current during start-up, current mode control for improved rejection of input voltage, and output load transients and cycle-by-cycle current limiting. An output voltage tolerance of ±4%, within specified input voltages and output load conditions, is specified for the power supply system.




  • Vin: 10-15V DC
  • Vout: 24V DC
  • Iout: 1A
  • Frequency: 100KHz

Schematic is a simple boost topology arrangement based on datasheet. Input capacitors and diode should be placed close enough to the regulator to minimize the inductance effects of PCB traces. IC1, L1, D1, C1,C2 and C5,C6 are the main parts used in voltage conversion. Capacitor C3 is a high-frequency bypass capacitor and should be placed as close to IC1 as possible.

All components are selected for their low loss characteristics. So capacitors selected have low ESR and inductor selected has low DC resistance.

At maximum output power, there is significant heat produced by IC1 and for that reason, we mounted it directly on the ground plane to achieve maximum heat dissipation.



Part Value Package MPN Mouser No
C1 C2 33uF 25V 1Ω 6.3 x 5.4mm UWX1E330MCL1GB 647-UWX1E330MCL1
C3 0.1uF 50V 0Ω 1206 C1206C104J5RACTU 80-C1206C104J5R
C4 1uF 25V 1206 C1206C105K3RACTU 80-C1206C105K3R
C5 C6 220uF 35V 0.15Ω 10 x 10.2mm EEE-FC1V221P 667-EEE-FC1V221P
D1 0.45 V 3A 40V Schottky SMB B340LB-13-F 621-B340LB-F
IC1 LM2585S-ADJ TO-263 LM2585S-ADJ/NOPB 926-LM2585S-ADJ/NOPB
L1 120 uH 0.04Ω 30.5 x 25.4 x 22.1 mm PM2120-121K-RC 542-PM2120-121K-RC
R1 28 KΩ 1206 ERJ-8ENF2802V 667-ERJ-8ENF2802V
R2 R3 1.5 KΩ 1206 ERJ-8ENF1501V 667-ERJ-8ENF1501V
R4 1 KΩ 1206 RT1206FRE07931KL 603-RT1206FRE07931KL
LED1 RED LED 20mA 2.1V 0805 599-0120-007F 645-599-0120-007F



We’ve done a simulation of the LM2585 step-up DC-DC converter using the TI’s WEBENCH online software tools and some of the results are presented here.

The first graph is the open-loop BODE graph. In this graph, we see a plot of GAIN vs FREQUENCY in the range 1Hz – 1M and PHASE vs FREQUENCY in the same range. This plot is useful as it gives us a detailed view of the stability of the loop and thus the stability and performance of our DC-DC converter.

Bode plot of open control loop

What’s interesting on this plot is the “phase margin” and “gain margin“. The gain margin is the gain for -180deg phase shift and phase margin is the phase difference from 180deg for 0db gain as shown in the plot above. For the system to be considered stable there should be enough phase margin (>30deg) for 0db gain or when phase is -180deg the gain should be less than 0db.

On the plot above we see that the phase margin is ~90deg and that ensures that the DC-DC converter will be stable over the measured range.

The next simulation graph is the Input Transient plot over time.

Input Transient simulation

In this plot, we see how the output voltage is recovering when the input voltage is stepped from 10V to 15V. We see that 4ms after the input voltage is stepped the output has recovered to the normal output voltage of 24V.

The next graph is the Load Transient.


Load Transient simulation

Load transient is the response of output voltage to sudden changes of load or Iout. We see that the output current suddenly changes from 0,1A to 1A and that the output voltage drops down to 23,2V until it recovers in about 3ms. We also see that when the load is reduced from 1A to 0,1A, output voltage spikes up to ~25,5V, then rings until it recovers to 24V in about 4ms.

The last graph shows the Steady State operation of DC-DC converter @ 1A output.


This graph shows the simulated output voltage ripple and inductor current. We see that output voltage ripple is ~0,6Vpp and the inductor current has a peak current of 2,4A. The inductor we used is rated at max 5,6A DC so it can easily withstand such operating current and without much heating of the coil.

Operating point data (Vin=13V, Iout=1A)

Operating Values
Pulse Width Modulation (PWM) frequency Frequency 100 kHz
Continuous or Discontinuous Conduction mode Mode Cont
Total Output Power Pout 24.0 W
Vin operating point Vin Op 13.00 V
Iout operating point Iout Op 1.00 A
Operating Point at Vin= 13.00 V,1.00 A
Bode Plot Crossover Frequency, indication of bandwidth of supply Cross Freq 819 Hz
Steady State PWM Duty Cycle, range limits from 0 to 100 Duty Cycle 48.3 %
Steady State Efficiency Efficiency 93.2 %
IC Junction Temperature IC Tj 65.2 °C
IC Junction to Ambient Thermal Resistance IC ThetaJA 34.9 °C/W
Current Analysis
Input Capacitor RMS ripple current Cin IRMS 0.14 A
Output Capacitor RMS ripple current Cout IRMS 0.48 A
Peak Current in IC for Steady State Operating Point IC Ipk 2.2 A
ICs Maximum rated peak current IC Ipk Max 3.0 A
Average input current Iin Avg 2.0 A
Inductor ripple current, peak-to-peak value L Ipp 0.50 A
Power Dissipation Analysis
Input Capacitor Power Dissipation Cin Pd 0.01 W
Output Capacitor Power Dissipation Cout Pd 0.035 W
Diode Power Dissipation Diode Pd 0.45 W
IC Power Dissipation IC Pd 1.0 W
Inductor Power Dissipation L Pd 0.16 W


The output voltage is configured by R1, R2 according to the following expression (Vref=1,23V)

VOUT = VREF (1 + R1/R2)

If R2 has a value between 1k and 5k we can use this expression to calculate R1:

R1 = R2 (VOUT/VREF − 1)

For better thermal response and stability it is suggested to use 1% metal film resistors.






🛠️ Dive into our collection of DIY Kits, 🔊 Audio Amplifiers, Digital Scoreboards, FM transmitters, and more!
🎶 Explore endless possibilities at our new store.

Leave a Reply

Your email address will not be published. Required fields are marked *